
JOURNAL OF APPLIED ECONOMETRICS
J. Appl. Econ. (2016)
Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/jae.2525
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SUMMARY
This paper introduces classification tree ensembles (CTEs) to the banking crisis forecasting literature. I show that
CTEs substantially improve out-of-sample forecasting performance over best-practice early-warning systems.
CTEs enable policymakers to correctly forecast 80% of crises with a 20% probability of incorrectly forecasting
a crisis. These findings are based on a long-run sample (1870–2011), and two broad post-1970 samples which
together cover almost all known systemic banking crises. I show that the marked improvement in forecasting
performance results from the combination of many classification trees into an ensemble, and the use of many
predictors. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The number of institutions whose explicit goal is to identify and address risks to the financial system
has increased in the post-2008 economic policy landscape. In the USA, for example, the Financial
Stability Oversight Council (FSOC) has been given a statutory mandate to ‘identify risks and respond
to emerging threats to financial stability’. 1 A core question policymakers in these institutions face is:
where is the economy currently operating relative to the economic danger zones from which banking
crises emanate? It is here that formal early-warning systems can make a valuable contribution.

This paper introduces classification tree ensembles (CTEs) (Breiman, 1996b, 2001) to financial
crisis forecasting and analyzes their ability in making out-of-sample predictions for binary banking
crisis indicators on the basis of several datasets: one long-run annual dataset (1870–2011), covering
17 developed countries, and two post-1970 datasets, the first covering 162 countries annually and
the second quarterly. The results suggest that the out-of-sample forecasting performance of CTEs
substantially surpasses current best-practice logit specifications. To give a concrete example of the
trade-offs involved, the favorite CTE allows policymakers to correctly forecast about 50% of banking
crises, at the cost of a 5% chance of wrongly forecasting a crisis when none will actually occur. The
best-practice logit specification can achieve the same 50% rate of correct crisis forecasts only at the
substantially higher cost of a 25% chance of making a wrong crisis call. If policymakers prefer a higher
rate of correct crisis forecasting, both prior models offer one. The CTE can correctly forecast about
90% of banking crises, with a 30% probability of making a false crisis prediction. The best-practice
logit specification can achieve the same 90% rate of correctly forecasting a crisis, only at the far higher
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1 The citation is taken from the FSOC’s website: http://www.treasury.gov/initiatives/fsoc/Pages/home.aspx.
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cost of an 80% chance of erroneously predicting a crisis. In both scenarios, the CTE offers the better
trade-off. In light of their superior performance, CTE forecasts should become an important tool of
macroprudential policy.

This paper relates to the existent literature in the following ways. It adds to the modern litera-
ture on early-warning systems (EWS) for banking crises, which was pioneered by Kaminsky (1998)
and Kaminsky and Reinhart (1999) in the wake of the 1997 Southeast Asian crises. More recent
contributions that analyze the predictability of banking crises in developed economies in the long
run (since 1870) are: Schularick and Taylor (2012) and Jordà (2014), while others rely on post-1970
samples covering more countries (see Drehmann and Juselius, 2012; Drehmann, 2013). This lit-
erature has shown that already relatively simple model structures, based on few predictors—most
notably credit aggregates—can convey valuable information on the imminence of a banking crisis.
This paper will explore whether more complex classification tree structures, based on many predictors
can improve upon this.

Thus this paper is related to the literature on economic forecasts based on many predictors
(see Stock and Watson, 2002, 2006), which has stressed the possibility of improving forecasts by
drawing from a large set of indicators. It will be demonstrated that increasing the number of predic-
tors that are used in best-practice early-warning systems from 7–10 to�70–80 will markedly improve
forecasts. The literature on economic forecasts based on many predictors has focused largely on factor
modeling and prestep-dimensionality reduction techniques. Such approaches do not easily lend them-
selves to banking crisis forecasting. First, most banking crisis indicators are binary 0–1 dummies that
require discrete classification techniques.2 Furthermore, widely held beliefs on the genesis of banking
crises, namely that they are characterized by discontinuous threshold effects and nonlinear interaction
effects between several risk factors (see Duttagupta and Cashin, 2011), are more naturally accommo-
dated by methods which dispense with linearity assumptions from the outset. This paper will apply
classification tree structures (see Breiman et al., 1984), which naturally accommodate discontinuous
threshold effects as well as nonlinear interactions and can harness many predictors in doing so (see
also Varian, 2014).

A classification tree can be seen as a recursive version of the more familiar signals approach to crisis
forecasting. Similar to the signals approach, classification trees split a sample into two parts by search-
ing for a predictor and a threshold along that predictor which separates the crisis observations in the
sample from the non-crisis observations. Credit growth in the 90th percentile, for example, might be
indicative of an impending banking crisis. After the sample has been split in two by the first threshold,
the procedure is repeated for the two resulting subsamples—containing observations above and below
the 90th percentile credit growth-threshold, respectively. In this way a sample can be recursively par-
titioned into crisis and non-crisis subsamples.3 Individual classification trees, however, are renowned
for being highly unstable, i.e. their high variance in mean-squared-error terms. This instability severely
impairs their forecasting ability. To overcome this, Breiman (1996b) has suggested estimating many
trees on many bootstrap samples and then aggregating them into a classification tree ensemble—or
forest. This so-called bagging (short-hand for bootstrap aggregating) takes high-variance trees and
combines them into low-variance forests, which retain the ability of individual trees to deal with many
predictors and accommodate nonlinear threshold and interaction effects. Their ability to thus precisely
delineate several danger zones, and their ability to harness many predictors in doing so, has already
made them a mainstay in other research areas, such as genetics, where often thousands of genetic
markers are analyzed with respect to their contributions to particular diseases (e.g. Díaz-Uriarte and
De Andrés, 2006). Further examples for the wide applicability of tree-based ensemble methods come

2 Exceptions are continuous crisis indices such as the exchange market pressure index pioneered by Eichengreen et al. (1994).
Such indices are available for fewer countries and cover shorter time-spans than their binary counterparts.
3 Recent contributions have already begun to explore the potential of classification trees for the analysis of banking crises
(Davis and Karim, 2008; Duttagupta and Cashin, 2011).
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from ecology (e.g. Prasad et al., 2006), bioinformatics (e.g. Chen and Liu, 2005) and high-energy
particle physics (Albert et al., 2008). In parallel work, Alessi and Detken (2014) have also recently
investigated the potential of CTEs for banking crisis forecasting.4

This paper is structured as follows. Section 2 provides an introduction to classification tree ensem-
bles and Section 3 introduces the datasets. These datasets form the basis for the out-of-sample
forecasting contest between CTEs and the best-practice logit specifications in Section 4. Section 5
concludes this paper by showing how a particular CTE, random forest, would have fared in forecasting
the 2007/2008 financial crisis.

2. METHODOLOGY: CLASSIFICATION TREE ENSEMBLES

This section gives an introduction to classification trees and their ensembles (CTEs). It also contrasts
the classification tree approach with the generalized linear models (GLM) framework, in order to
clarify how classification trees differ from logit and probit models—the backbone of many current
EWSs for banking crises.

2.1. Single Classification Trees

Classification trees separate crisis from non-crisis observations according to a set of discrete threshold
rules. For instance, if an economy’s private sector indebtedness exceeds a certain threshold, and GDP
growth is faltering below another threshold, a classification tree might categorize the observation into
the high-risk category. If, on the other hand, indebtedness was lower and GDP growth was higher, the
observation might be categorized as low risk.

Figure 1 illustrates this idea graphically. x1 and x2 are two predictors conveying information about
financial crisis risk. In the two-dimensional predictor space spanned by x1 and x2, black dots indi-
cate crisis observations, while white dots stand for non-crisis observations. A classification tree is
characterized by a partition of the predictor space into M non-overlapping regions Rm and an asso-
ciated set of crisis probabilities pm (m D 1; : : : ;M ). The regions are estimated through recursive
partitioning—a step-wise algorithm. The algorithm will be described in more detail in the following
section, but a short description is given here in order to provide intuition on how the region estimatesbRm come about: recursive partitioning searches across predictors for a threshold that separates crisis
from non-crisis observations (see upper left panel of Figure 1). Next, the sample splitting continues on
the obtained subsamples as indicated by the upper right and lower left panels of Figure 1. Once recur-
sive partitioning stops, a crisis probabilitybpm for regionbRm (m D 1; : : : ;M ) is estimated according
to the fraction of crisis observations in that region:

bpm D
P
i2bRm yiP
i2bRm 1 (1)

where yi D 1 if a crisis occurs within the next 2 years, and yi D 0 in all other cases. In the final
partition depicted by the lower left panel of Figure 1, for instance, regions 3 and 5 delineate danger
zones of high crisis risk. Regions 1–3, conversely, predict zero crisis risk. The partitioning of the

4 Alessi and Detken’s (2014) approach differs considerably from the approach followed here. They use a tree ensemble to
identify important variables, and then estimate a single tree based on these variables. Single-tree forecasts allow for a better
interpretation than ensemble-based forecasts. However, single-tree forecasts are plagued by high variance and thus are unlikely
to be precise. Furthermore, identifying important variables with a CTE is problematic: several methods exist to determine
the importance of a predictor in a CTE—they can produce very different results (see the series of papers published in BMC
Bioinformatics: Nicodemus et al., 2007; Strobl et al., 2007, 2008; Nicodemus and Malley, 2009; Nicodemus et al., 2010).
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Figure 1. Recursive partitioning: an illustration. The upper left panel shows the first recursive partitioning step,
while the upper right panel shows the second recursive partitioning step. The lower left panel shows a third and
fourth partitioning step. The lower right panel shows the tree corresponding to the partition in the lower left panel.
Filled circles, crisis; empty circles, no crisis; xj , predictors; ts

j
, splits/thresholds; Rm, terminal regions

predictor space can also be represented as a dendrogram, in which the final nodes correspond to the
final region estimates—hence the name classification tree (see lower right panel of Figure 1).

Formally, a classification tree predicts crisis probability as

bT .Xi / D MX
mD1

bpmI.Xi 2bRm/ (2)

wherebpm is the probability estimate of a crisis occurring within the following 2 years, Xi is a J � 1
vector of predictor values, for observations i D 1; : : : ; N and I.Xi 2bRm/ is an indicator function that
equals 1 when regionbRm contains observation i .
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A comparison to current workhorse specifications for banking crisis EWS, such as logit and pro-
bit models, will help to bring the characteristics of classification trees into sharper contrast. In the
specification of a generalized linear model (GLM) with a binomially distributed dependent variable

P.yi jXi / D g
�1.X 0iˇ/ (3)

a dual set of assumption is made: first, in the form of a link function g (e.g. the logit link), whose
inverse—the mean function—maps the linear predictorX 0iˇ onto the Œ0; 1�-range; second, by assuming
that the predictor values enter crisis risk only as a linear additive combination X 0iˇ.5

An advantage of classification trees is that they are more flexible in both regards. First, the non-
parametric calculation of crisis probabilities according to equation (1) obviates the need to map an
unbounded predictor range to the Œ0; 1�-crisis probability domain with the help of a particular mean
function. Classification trees are thus free to approximate a multitude of functional forms between the
dependent variable and the predictors through the combination of discrete thresholding rules.6 Sec-
ondly, contrary to the GLM framework, classification trees are geared towards identifying nonlinear
and discontinuous predictor interactions, while maintaining the ability also to approximate smooth
and even linear relationships.7 A downside of this flexibility is that globally optimal estimation of all
the parameters that characterize a classification tree ‚ D ¹Rm; pmºMmD1 constitutes an NP-complete
problem (Hyafil and Rivest, 1976). Thus classification tree regions are typically estimated through
recursive partitioning—a greedy search algorithm that conducts a stepwise locally optimal estimation.

2.2. Recursive Partitioning

At each recursive partitioning step a threshold, or split point, is selected in order to minimize a loss
function. This loss function is the (negative) information gain IG, which measures the extent to which
a split point is successful in separating crisis from non-crisis observations. Evaluating the homogeneity
of a region in terms of the crisis and non-crisis observations contained in it necessitates the defini-
tion of a measure of region impurity. Gini impurity—a parabolic function of the proportion of crisis
observations pa in region Ra—is such a measure:

GI D �2p2a C 2pa

GI reaches minima of 0 in regions that contain only crisis observations (pa D 1) or only non-crisis
observations (pa D 0). For 0 < pa < 1 GI exceeds 0 and reaches a maximum of 0.5 for regions
that contain an equal amount of crisis and non-crisis observations (pa D 0:5). As its name suggests,
Gini impurity is thus a measure of region impurity that penalizes the mixing of crisis and non-crisis
observations within a region. On the basis of this measure it is possible to define the loss function
according to which split points are selected at each recursive partitioning step—the information gain:

IG.Ra; Rb/ D GI.Ra [Rb/ � 0:5 ŒGI.Ra/C GI.Rb/�

5 There exists, however, the possibility to explicitly define some interaction effects and higher-order terms and include them
among the other predictors.
6 The right sort and degree of functional flexibility depends on the problem at hand. Liu et al. (2004) present a set of condi-
tions under which classification trees outperform artificial neural networks, although the latter are generally more flexible; the
financial crisis forecasting problem seems to fit this set of conditions.
7 To see this, imagine crisis and non-crisis observations were separated along one of the two linear diagonals in the panels of
Figure 1. In this case, a good separation of crisis from non-crisis observations would necessitate the estimation of several more
regions, but eventually a satisfying approximation to the diagonal separation could be achieved through a somewhat more finely
granulated partitioning of the predictor space. Note, however, that smaller regions tend to contain fewer observations and the
corresponding crisis probability estimates would be less precise.
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IG.Ra; Rb/ compares the Gini impurity of a parent region GI.Ra [ Rb/ with the average Gini
impurity of the two child regions GI.Ra/ and GI.Rb/ that a split point creates. The negative IG
constitutes the loss function that is minimized at each recursive partitioning step s D 2; : : : ; S through
the choice of a splitting predictor j and a split point t along the range of that splitting predictor:

Ot sj D arg max
ts
j

IG
�
Rsa

�
t sj jOt

1
j ; : : : ; Ot

s�1
j

�
; Rsb

�
t sj jOt

1
j ; : : : ; Ot

s�1
j

��
(4)

The thrust behind equation (4) is to estimate thresholds that separate crisis and non-crisis observa-
tions into different regions.8 Note that only the first split s D 1 is an unconditional one; all others
depend on all previously estimated splits Ot1j ; : : : ; Ot

s�1
j .

Recursive partitioning can end in one of two ways: either running its course until the classifica-
tion tree has been ‘fully grown’, i.e. only pure regions are left; or recursive partitioning can be ended
through an ad hoc stopping rule. For example, each terminal region can be required to contain a min-
imum number of observations.9 The final partition constitutes an estimate of the M terminal regions
¹bRmºMmD1, on the basis of which the classification tree (2) can be completed by estimating crisis prob-
abilities ¹bpmºMmD1 according to equation (1). Algorithm 1 gives an overview of all the steps involved
in estimating a classification tree.

Despite their ability to handle many predictors and accommodate nonlinear threshold and interac-
tion effects, classification trees have been associated with poor out-of-sample forecasts of banking
crises (see Davis and Karim, 2008). What is the reason for this? The most significant constraint that
holds back the forecasting performance of a single classification tree is its high variance—an unwel-
come side effect of recursive partitioning. Small changes in the sample under analysis can easily lead
to changes in the early partitions and, owing to the dependence of later partitions on earlier ones, this
change then reverberates throughout the tree. The results in Section 4 will confirm that this instabil-
ity deals a severe blow to the forecasting performance of single classification trees. Fortunately, as
explained in the next section, combining many classification trees into a CTE can provide a solution
to this problem.

8 Note that the stepwise estimation through recursive partitioning allows classification trees to make use of many predictors,
whereas generalized linear models estimated through maximum likelihood would run into problems associated with the curse
of dimensionality.
9 Usually the application of such an ad hoc stopping rule is necessary to avoid poor out-of-sample predictions due to severe
in-sample overfitting. The following analyses impose a lower bound of 10 observations on the terminal region size of single
classification trees. The single-tree results are, however, robust to variations in the stopping rule.
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2.3. Classification Tree Ensembles

As the name suggests, an ensemble of trees—or forest F—consists of many classification trees Tb ,
b D 1; : : : ; B . Each individual tree ‘grows’ on an i.i.d. bootstrap sampleXb , for whichN observations
are drawn with replacement from the original dataX . Such bootstrapping with subsequent aggregation
is referred to as bagging (Breiman, 1996b).10 If each tree is given the same weight, a forest’s crisis
probability estimate is

bF.Xi / D 1

B

BX
bD1

bTb.Xi / (5)

Thus the forest’s prediction is simply the average prediction of the B single trees.11

Why are tree ensembles expected to have better predictive ability than individual classification
trees? Consider the variance-bias decomposition of the mean squared error (MSE) of a tree:12

E
h
.y � bTb/2i D E

²hbTb �E.bTb/i2
³

„ ƒ‚ …
WD�2tree

C
h
E.bTb/ � yi2„ ƒ‚ …
WDbias2tree

(6)

and a forest:

E
h
.y �bF /2i D E ²hbF �E.bF /i2³„ ƒ‚ …

WD�2bag

C
h
E.bF / � yi2„ ƒ‚ …
WDbias2bag

The main rationale behind bagging is its variance-reducing effect: the variance of the average of
B identically—but not independently—distributed variables (note that trees are grown on overlapping
bootstrap samples) is

�2bag D ��
2
tree C

1 � �

B
�2tree

where � is the pairwise correlation between any two trees13 and thus

�2bag � �
2
tree

Hence the variance of a tree ensemble can generally be expected to be lower than the variance of
an individual tree (see Bühlmann and Yu, 2002; Buja and Stuetzle, 2006), with ��2tree constituting the
lower bound on variance that can be reached through bagging.

10 Note that the use of the bootstrap methodology in bagging is somewhat unusual, in that it is not used for statistical inference
here. Hence the choice of the i.i.d. bootstrap is harmless at the bagging stage. However, temporal and cross-sectional dependen-
cies in the data presumably resurface later in the form of temporally and cross-sectionally dependent crisis probability estimates.
Therefore at a later stage, for the evaluation and comparison of the models’ predictive ability on the basis of their crisis proba-
bility estimates, block-bootstrap procedures become important for robustifying confidence intervals and statistical tests (see the
online Appendix, provided as supporting information).
11 CTEs appear to be rather unaffected by tree growth-stopping rules (Segal, 2004). Fully growing each tree in an ensemble has
consequently established itself as a standard and has therefore been applied to the following analysis.
12 For ease of clarification, the following argument assumes fixed predictors and thus abstracts from population MSE, which is
in any case beyond the control of forecasters.
13 Note the exchangeability assumption needed in the derivation of this expression: cov.Ti ; Tj / D cov.T1; T2/ for any i ¤ j .
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One of the most prominent ensemble algorithms that will be investigated in the following sections
is random forest (Breiman, 2001), which aims at lowering ensemble variance �2bag even further, by
lowering �—or the correlation between trees. This is done by considering only a random subset Jtry of
all J predictors in the maximization problem faced at each recursive partitioning step (4). This subset
of predictors is drawn without replacement from the set of all predictors.14 Individual trees thus no
longer vary only with respect to the bootstrap sample on which they are ‘grown’, but also with respect
to the selection of splitting predictors. The trees become less similar (i.e. � is lower) and, all else equal,
ensemble variance decreases.15 Besides this, random forest equals bagging:

bRF.Xi / D
1

B

BX
bD1

bT RF
b .Xi / (7)

A concise overview of all the steps involved in obtaining the bagging (5) and random forest crisis
probabilities (7) can be found in Algorithm 2.

Note that while the branches and leaves of an individual tree can still be traced and interpreted in
economic terms, one drawback of CTEs is that they lose this straightforward interpretability. In this
sense CTE-based forecasts might be thought of as a complement to methodologies that are better
suited to the evaluation of the relative importance of different risk factors.16

14 A widely used default choice for Jtry, which the following analysis will adhere to, is b
p
J c (see Breiman, 2002). Generally,

the paper makes use of default settings sourced from the literature for fine-tuning parameters (Jtry and tree growth stopping
rules). Given the rarity of severe banking crises setting aside part of the data for tuning considerations (i.e. validation data) is an
excessive strain on the samples.
15 Bagging and randomization also have countervailing effects on prediction bias. Averaging across many trees smooths out the
discontinuities found in any single tree. This can lower CTE bias (Buja and Stuetzle, 2006). However, each bootstrap sample
leaves out�37% of observations, which increases finite sample bias compared to larger resamples.
16 Although several methods exist to determine the importance of a predictor in a CTE, for the applications that follow I
find few commonalities between the predictor rankings produced by two of the most common variable importance measures
(see online Appendix for results and further discussion).
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3. DATA

This section introduces three datasets on the basis of which I will evaluate the forecasting performance
of logit models, single classification trees and CTEs. Systemic banking crises are rare. Their statistical
analysis necessitates datasets that cover large time-spans or many countries—one usually comes at the
cost of the other. Therefore I make use of one long-run sample spanning from 1870 to 2011, as well
as two post-1970 samples with broader country coverage.

3.1. The Long-Run Sample, 1870–2011

With regard to the long-run sample, this study utilizes the dataset introduced by Schularick and Taylor
(2012). After further extensions by Jordà et al. (2013), this dataset now ranges from 1870 to 2011
and covers 17 countries. Usually, these countries cumulatively constitute more than half of the world’s
GDP (according to Maddison GDP estimates).

The dataset features macroeconomic indicators (GDP, consumption, investment, consumer prices,
current account and exchange rates) as well as financial indicators (bank loans, total bank assets, stock
prices, interest rates, public debt and monetary aggregates). These are the base indicators from which
�70 predictors are derived (see Table A1 in the online data Appendix). The bare nominal series (n)
are utilized when they are deemed to be of interest with respect to crisis risk (e.g. nominal interest
rates). CPI-deflated quantities, growth rates (gr), trend deviations (gap), to GDP ratios (/GDP), global
(GDP-weighted) averages (glo), real exchange rates and interest rate differentials are also obtained
(see Alessi and Detken, 2011, for a similar approach). Furthermore, to obtain an even more detailed
snapshot of economic conditions several of these transformations are combined when it makes eco-
nomic sense, e.g. the gap of the loans-to-GDP ratio (loans/GDP (gap)). Schularick and Taylor (2012)
also provide a binary banking crisis indicator, the definition of which follows Laeven and Valencia
(2008): the indicator takes a value of 1 for years characterized by bank runs, a jump in default rates
and large capital losses associated with public interventions as well as bankruptcies or forced mergers
of major financial institutions. Otherwise the indicator takes a value of 0. Overall, the dataset contains
93 systemic banking crises (for the country–year incidence of crises see the crisis map (Figure A1) in
the online data Appendix).

3.2. The Broad Post-1970 Samples

For the post-1970 period, this paper makes use of the binary banking crisis indicator provided by
Laeven and Valencia (2013). This indicator encompasses 162 countries and 147 systemic banking
crises between the years 1970 and 2011 (for the country–year incidence of crises see the crisis map
(Figure A2) in the online data Appendix).17

Next, annual and quarterly base indicators from the IMF IFS database and Datastream were
obtained. When selecting base indicators, it was paramount to consider their availability across a wide
range of countries, as a multitude of missing values would further endanger the already small number
of financial crises. The annual indicators include consumer prices, net exports, exchange rates, bank
loans, stock prices, interest rates and public debt (provided by Abbas et al., 2013). The quarterly indi-
cators include GDP, consumer prices, exchange rates, bank loans, stock prices, house prices, interest
rates, foreign liabilities and reserves. For the post-1970 annual sample, further use is made of the GDP,
consumption and investment series from the Penn World Tables (Feenstra et al., 2013), as well as the
public debt-to-GDP ratios from Abbas et al. (2013). A detailed list of all the predictors can be found
in the online data Appendix (see Tables A2 and A3). An overview of the characteristics of all datasets
is given in Table I.

17 For the quarterly dataset, the quarterly crisis dummy was set to 1 for all quarters, if the year dummy was 1. This is also the
case if a financial crisis began later in the year.
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Table I. Datasets

Dataset Long-run 1870–2011 sample Broad post-1970 sample I Broad post-1970 sample II

Base indicators Schularick and Taylor (2012) IFS, PWT, Abbas et al. (2013) IFS, Datastream
Crisis dummy Schularick and Taylor (2012) Laeven and Valencia (2013) Laeven and Valencia (2013)
Frequency Annual Annual Quarterly
Time-span 1870–2011 1970–2011 1970–2011
No. of countries 17 162 162
No. of predictors 77 (Table A1) 70 (Table A2) 73 (Table A3)
No. of crises 93 147 147
N 2414 7081 30,967

Note: N , number of observations; IFS, International Financial Statistics; PWT, Penn World Tables. The Schularick
and Taylor (2012) dataset has subsequently been extended and updated (see Jordà et al., 2013). All three datasets are
unbalanced. The number of observations and crises will vary across applications.

4. PERFORMANCE COMPARISON

This section stages the competition between logit models, single classification trees and CTEs. The
rules are simple: the method whose crisis probability predictions achieve the highest out-of-sample
area under the receiver operating characteristic curve (AUC) wins.18 The following paragraph gives a
short introduction to the AUC measure

Each crisis forecasting model faces a true positive rate (TPR)–false positive rate (FPR) trade-off.
At one extreme, the model could make a crisis call for each period, thus correctly predicting all crises
(100% TPR). However, this comes at the price of never correctly giving the all-clear (100% FPR). At
the other extreme, a model could never issue a crisis warning, and thus be correct for all non-crisis
periods (0% FPR) at the cost of never correctly predicting a crisis (0% TPR). Crisis probability esti-
mates can be translated into crisis calls or all-clears depending on whether crisis probability passes a
certain threshold � 2 Œ0; 1�. For different thresholds different TPR–FPR combinations are obtained. By
slowly shifting the threshold � from 0 to 1 all of the TPR–FPR combinations that a model is capable
of can be depicted in the TPF–FPR plane (a unit square). The resulting curve is the ROC curve, which
gives a comprehensive description of a model’s predictive ability. The area under this curve (AUC) is a
slightly more aggregate measure, upon which most of the following model comparisons will be based.
The AUC ranges from 0.5 to 1. An AUC of 1 indicates a perfect EWS, which correctly forecasts all
crises as crises, and all non-crises as non-crises. An AUC of 0.5 indicates an entirely uninformative
EWS. The corresponding ROC curve is a diagonal in the TPR–FPR plane: a higher TPR only comes at
the cost of an equally higher FPR. Intuitively, the AUC represents the probability that, for a randomly
selected pair of one crisis and one non-crisis observation, the crisis probability estimate for the crisis
observation is higher than that for the non-crisis observation. For a comprehensive introduction to the
ROC curve and the AUC in the context of financial crisis forecasting see Jordà (2014).

All model evaluations are based on out-of-sample data. For the CTEs, so-called out-of-bag (OOB)
data are used (see Breiman, 1996a). A tree’s OOB data are those �37% of observations that are not
contained in the bootstrap sample on which this tree was estimated. Correspondingly, each obser-
vation constitutes OOB data to �37% of the trees in an ensemble. Out-of-sample crisis probability
estimates are obtained by evaluating each observation by only those trees in an ensemble for which
it constitutes OOB data. For single classification trees and the logit models, this section conducts
Monte Carlo cross-validation (MCCV) evaluations that are comparable to the OOB evaluations. For
instance, 100 logit models are estimated based upon 100 bootstrap samples (drawn with replacement).

18 The receiver operating characteristic (ROC) curve and the AUC are useful for the evaluation of predictive performance in
classification problems where one class constitutes a minority class (e.g. banking crises). Under such circumstances, many other
criteria tend to inflate the predictive ability of models that blindly predict the majority class.
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With the observations not contained in the bootstrap samples 100 out-of-sample AUCs are calculated
and their average constitutes the MCCV estimate. The MCCV-AUC is comparable to the OOB-AUC
in that both are estimates of expected out-of-sample performance (AUC D E.AUCT /) as opposed to
conditional out-of-sample performance—i.e. performance conditional on a particular training dataset
T .AUCT / (see Hastie et al., 2013, pp. 254–257).

4.1. Logit EWS

To obtain a yardstick against which to measure the performance of CTEs, this subsection first reports
logistic regression-based results. Bi- and multivariate logit models were estimated on the basis of a
selection of predictors, which are comparable to those found in the literature.

Among the single predictors the largest AUCs come from the private burden (AUC = 0.64) and
the loans/GDP gap (AUC = 0.63). They are significantly different from 0.5 at the 1% significance
level.19 The public debt/GDP gap (AUC = 0.59) and the public burden (AUC = 0.58) achieve signifi-
cance at higher levels. Most of the other AUC estimates hover closely above 0.5—a rather poor result.
Generally, these results are similar to those obtained by Jordà (2014), who, based on comparable
specifications, reports AUCs ranging from 0.52 to 0.67.20

Next are multivariate specifications. The variable selections are displayed on the right-hand side of
Table II. They are inspired by similar specifications in Schularick and Taylor (2012) and Jordà et al.
(2011). AUCs of all three multivariate models are significantly different from 0.5 at the 1% significance
level. They range from 0.62 to 0.65.

Compared to the baseline specification, the IA specification with interaction terms is successful in
conveying extra information on the imminence of a banking crisis (AUC = 0.65). The AUC remains
the same after the additional inclusion of country fixed effects. These results are very close to the
out-of-sample results reported by Schularick and Taylor (2012) (AUC = 0.646), which are based on
similar logit specifications and data.

4.2. Classification Tree-Based EWS

CTEs are not just an ensemble of trees but also an ensemble of techniques. To obtain an impression of
the relative efficacy of bagging, randomization and the use of many predictors, the following analysis
will build up to the final RF model one step at a time. First, a single classification tree, based on the
same restricted selection of 10 predictors as the IA logit model, will be presented, before bagging and
randomization is added to the recipe. After that, the same three steps—(i) single tree, (ii) bagging,
(iii) randomization—will be analyzed on the basis of the broader set of 76 predictors.

4.2.1. Single Tree
The left-hand side of Table II displays results for the restricted predictor selection. Here, a single tree
performs badly (AUC = 0.55). This confirms similar findings by Davis and Karim (2008). When put in
terms of the MSE equation (6), a likely explanation for this is the high variance of single classification
trees. Estimation through recursive partitioning makes them highly susceptible to small changes in
finite training samples.

19 The reported results hold up when confidence bands and tests are robustified against serial and cross-sectional correlation in
the crisis probability estimates (see online Appendix).
20 On the basis of 19 systemic crises (11 of which are associated with the most recent global financial crisis) Drehmann and
Juselius (2013) report mean AUC estimates between 0.8 and 0.9 for their logit specifications. These high AUC estimates may
hint at important country and time specificities in the development of financial crises. The soon to be introduced CTEs also enter
the 0.8–0.9 range of AUC estimates, but on the basis of a more diverse set of banking crises (� 70). This will allow forecasters
to predict banking crises, which resemble crises from the more distant past or crises from less similar countries.
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4.2.2. Bagging
Indeed, the dramatic improvement in forecasting performance for an ensemble made up of many trees
over an individual tree appears to confirm that tree variance was to blame for an individual tree’s bad
performance. The second row in the upper left quadrant of Table III displays the effect of bagging in
the 10-variable setting. The AUC leaps by more than 0.2 to a value of 0.77. This AUC is significantly
higher than that displayed by the FE & IA-logit model.

4.2.3. Random Forest
The third model in the upper left quadrant of Table III is the RF estimator. The additional randomiza-
tion, in the form of randomly analyzing only three out of the 10 predictors at each recursive partitioning
step, leads to a slightly higher mean AUC estimate of 0.79. CTEs have already left behind their logistic
competitors without yet having capitalized on their ability to make forecasts with far more predictors.

4.2.4. Many Predictors
I now turn to the more predictor-intensive contenders. The results are displayed in the upper right
quadrant of Table III. The extension of the list of predictors to a total of 76 results in a second signif-
icant leap in forecasting performance, by about 0.1 for the F (AUC = 0.87) and RF (AUC = 0.88)
estimators. Even the single classification tree (AUC = 0.63) now performs similarly to the multivari-
ate logit EWS. In summation, the combination of many classification trees into an ensemble and the
making use of many predictors result in marked improvements in banking crisis forecasts.

Table III. CT EWS: long-run 1870–2012 sample

Restricted selection Many predictors

Results

Model AUC 95% CI N AUC 95% CI N

Single tree 0.55 [0.5,0.6] 1816 0.63� [0.57,0.7] 1742
Bagging 0.77 [0.73, 0.81] 1816 0.87� [0.84,0.9] 1742
Random forest 0.79 [0.75, 0.83] 1816 0.88� [0.85,0.91] 1742

Specification

Parameter Single Bagging RF Single Bagging RF

B 1 5000 5000 1 5000 5000
Jtry 10 10 3 76 76 9
J 10 76
No. of crises 72 70

Note: Dependent variable: 2-year horizon before crisis. Restricted selection: loans/GDP
(gap), public debt/GDP (gap), narrow money/GDP (gap), LT interest rate, GDP
(gr), inflation, exchange rate (gap), loans/GDP, public debt/GDP, LT interest rate
(n). Many predictors: see Table A1 in the online data Appendix. For single tree:
out-of-sample mean AUC and confidence band estimates are based on Monte Carlo
cross-validation (see Picard and Cook, 1984; Arlot and Celisse, 2010); 100 MC draws
of training (63.2%)—test (36.8%) data partitions. For ensembles: out-of-sample AUC
estimates (and confidence intervals) are based on out-of-bag (OOB) data (see Breiman,
1996a).N , number of observations; J , number of predictors under analysis; Jtry num-
ber of predictors randomly selected and considered as a splitting variable at each
recursive partitioning step;B , number of trees. Specification table: if there is only a sin-
gle entry in the bagging column, this means that all models share the same specification.
� H0: AUCmany � AUCrestricted D 0. Bold:H0: AUC� AUClogitFE&IA.D 0:65/ D 0.
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Figure 2. ROC comparison. Receiver operating characteristic curves of the logit model with country FE and
interaction terms (grey) and RF model (black). The p-value corresponds to a test for equality of AUCs according
to DeLong et al. (1988). TPR, true positive rate; FPR, false positive rate

4.3. ROC Comparison

Depending on how much weight policymakers put on making correct crisis calls as opposed to cor-
rect all-clears, the logit EWS might be the preferable EWS after all. To see whether this is the case,
Figure 2 displays the ROC curves of both EWSs. The RF model offers the higher TPR for any given
FPR—equivalently, the RF model offers a lower FPR for any given TPR. Evidently, regardless of
policymakers’ preferences, the RF EWS offers the better TPR–FPR trade-off.

In order to get a better indication of RF EWS’s performance, some of the exemplary TPR–FPR
combinations from Figure 2 should be studied. The RF EWS offers a balanced TPR–FPR trade-off
at about TPR D .1 � FPR/ D 0:80, i.e. it enables policymakers to correctly forecast 80% of crises
and 80% of non-crises. However, if a 20% probability of mistakenly forecasting a crisis is deemed too
high by policymakers, the RF EWS allows for a reduction of the probability of mistakenly forecasting
a crisis to 5%, while still correctly forecasting about 50% of banking crises. At the other extreme,
policymakers eager not to miss any crisis could use the RF estimator to correctly forecast 95% of
crises. This will, however, result in only correctly predicting about 40% of non-crises. Any of these
trade-offs leaves policymakers substantially better off than when using the logit EWS.

4.4. Robustness

In order to check whether the main results generalize, the analysis is repeated for the annual and
quarterly post-1970 samples, emerging market and good-quality data subsamples, a different crisis
dummy as well as 1-year and 3-year pre-crisis horizons. In an effort to save space and to counteract
repetitiveness, Table IV presents an abbreviated analysis that only reports the results for the random
forest models.21

21 See the online robustness Appendix for an extended analysis of the annual and quarterly post-1970 samples.
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Table IV. Robustness: various RF EWS

Restricted selection Many predictors

Model AUC 95% CI N [crises] AUC 95% CI N [crises]

Long-run 1870–2011 dataset
1-year horizon 0.63 [0.56, 0.69] 1,816 [71] 0.79� [0.73,0.85] 1742 [70]
2-year horizon 0.79 [0.75, 0.83] 1,816 [70] 0.88� [0.86, 0.91] 1,742 [70]
3-year horizon 0.82 [0.8, 0.85] 1,816 [69] 0.89� [0.87, 0.91] 1,742 [69]
RR dummy 0.76 [0.72, 0.8] 1,800 [84] 0.86� [0.83, 0.89] 1,726 [84]

Post-1970 annual dataset
1-year horizon 0.64 [0.58, 0.69] 4,465 [103] 0.74� [0.7, 0.79] 4,373 [103]
2-year horizon 0.78 [0.75, 0.81] 4,465 [102] 0.85� [0.83, 0.87] 4,373 [102]
3-year horizon 0.8 [0.77, 0.82] 4,465 [102] 0.88� [0.87, 0.9] 4,373 [102]
Emerging markets 0.77 [0.72, 0.82] 823 [33] 0.82 [0.78, 0.87] 804 [33]
Quality data 0.8 [0.76, 0.84] 3,325 [77] 0.86� [0.84, 0.89] 3,256 [77]

Post-1970 quarterly dataset
1-year horizon 0.84 [0.82, 0.86] 19,126 [104] 0.93� [0.92, 0.94] 19,061 [104]
2-year horizon 0.85 [0.84, 0.86] 19,126 [102] 0.95� [0.95, 0.96] 19,061 [102]
3-year horizon 0.84 [0.83, 0.85] 19,126 [101] 0.96� [0.95, 0.96] 19,061 [101]
Q4 only 0.77 [0.74, 0.8] 4,820 [103] 0.83� [0.8, 0.85] 4,800 [103]
Emerging markets 0.88 [0.86, 0.89] 3,110 [30] 0.95� [0.94, 0.96] 3,110 [30]
Quality data 0.86 [0.84, 0.87] 15,033 [84] 0.96� [0.95, 0.96] 15,010 [84]

Note: Dependent variable: 1/2/3-year horizon before crisis. �H0: AUCmany � AUCrestricted D 0. Bold:
H0: AUC� AUClogitFE&IA D 0. All tests at the 5% significance level. Long-run sample restricted selec-
tion: loans/GDP (gap), public debt/GDP (gap), narrow money/GDP (gap), LT interest rate, GDP (gr),
inflation, exchange rate (gap), loans/GDP, public debt/GDP, LT interest rate (n). Long-run sample many
predictors: see Table A1 in the online data Appendix. Annual post-1970 sample restricted selection:
loans/GDP (gap), public debt/GDP (gap), GDP (gap), inflation, real exchange rate (gap), loans/GDP,
public debt/GDP, net exports/GDP (gap). Annual post-1970 sample many predictors: see Table A2 in
the online data Appendix. Quarterly post-1970 sample restricted selection: loans (gap), loans (gr), for-
eign liabilities (gap)(glo), LT interest rate (gap)(glo), GDP (gap)(glo), inflation, exchange rate (gap),
reserves (gap), GDP (gr)(glo). Quarterly post-1970 sample many predictors: see Table A3 in the online
data Appendix.

Concerning the 1-, 2- and 3-year pre-crisis horizons, AUCs generally increase with the length of the
horizon. This implies that it is harder to assess whether there will be a crisis next year than to assess
whether there will be a crisis within the next few years. This conforms to accounts which picture
banking crisis risks as building up slowly over time. At the same time, the actual crisis realization is
less determinate—usually triggered by a shock, which may or may not occur in any particular year.

EWSs may provide different results for different banking crisis dummies. In order to investigate
whether the high AUCs are specific to the banking crisis dummy by Schularick and Taylor (2012),
Table IV displays AUCs obtained for the banking crisis dummy by Reinhart and Rogoff (2010) (RR
dummy). The mean AUC estimates for the RR dummy are only marginally lower, otherwise the core
results hold: the CTE model outperforms the logit model based on the same set of predictors, and the
inclusion of many predictors significantly improves forecasts.

For the post-1970s datasets it is possible to look at emerging markets (EM) subsamples.22 Despite
the fact that the EM subsamples contain only about a third of the crisis events from the full sample, the
EM AUC estimates are remarkably similar to the baseline results. Note, however, that in the annual
post-1970 EM sample the inclusion of many predictors no longer significantly improves the AUC.

22 The EM subsample consists of Argentina, Brazil, Bulgaria, Chile, China, Colombia, Costa Rica, Croatia, Ecuador, Egypt,
Hungary, India, Indonesia, Lithuania, Malaysia, Mexico, Morocco, Panama, Papua New Guinea, Paraguay, Peru, Philippines,
Poland, Romania, Thailand, Turkey and Vietnam.
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Excluding countries of presumably poor data quality23 reduces the number of crises by about
one-fifth (from approximately 100 to around 80). AUCs tend to improve marginally by about 0.01.
The fact that the exclusion of noisy data and several outliers does not significantly alter the results
highlights the robustness of the recursive partitioning algorithm.24

Finally, AUCs for the quarterly dataset are systematically higher than for the two annual samples,
particularly in the case with many predictors. This is not due to the slightly different set of predictors
contained in the quarterly sample. This can be seen in the ‘Q4 only’ row of Table IV, which reports the
AUCs for a random forest model estimated only with the 4th quarter observations from the quarterly
dataset. In this case, AUC estimates converge with those for the two annual samples. CTEs seem to
thrive on the larger number of observations contained in the quarterly sample.

In summary, the core results hold up very well: the CTE-based EWSs yield significantly higher
AUCs than the logit alternative, and the inclusion of many predictors further improves the accuracy of
banking crisis predictions.

5. CASE STUDY: 2007/2008

To round out this study, the performance of the RF EWS based on many predictors is compared with
the IA-logit EWS in forecasting the 2007/2008 global financial crisis. Both EWSs are estimated using
the long-run sample, where only the data up to 1997 are incorporated and the rest of the data are used
as test data. The resulting crisis probability estimates for the test data (1998–2011) are reported in
Figure 3.

It is immediately clear that the RF crisis risk evaluation exhibits considerably more variation than
the logit model. For most countries it would have signaled a build-up in crisis risk in the mid 2000s.
Thus the RF model would have signaled rather clearly that the developed world as a whole was
embarking upon a path that historically has often ended in crisis. The evidence for the logit model is
less flattering. While for some countries it signals a (slightly) higher crisis risk, for others it signals no
big changes or even shows an increasing resilience during the 2000s.

The RF model produces mixed results with respect to the country-specific incidence of the
2007/2008 crisis. For the following countries crisis risk went up and a crisis did indeed occur: Bel-
gium, Switzerland, Denmark, Spain, France, UK, Italy, Netherlands, Portugal, Sweden and the USA.
Although the RF crisis risk is upward trending for all of these countries, its level is relatively low for
some, namely Switzerland and the USA. Germany, for which crisis risk does not even trend upwards,
also exhibits a very low risk level. How can these cases be explained? What brought down German
and Swiss banks was their exposure to foreign assets. For the USA, non-bank intermediation was at
the heart of its banking crisis. Neither exposure to foreign assets nor non-bank intermediation is well
reflected by any of the base indicators in the long-run sample. Extending the list of base indicators
may help improve forecasts.

Several countries show clear signs of being in a danger zone prior to 2007/2008, but did not experi-
ence a systemic banking crisis according to the binary indicator: Australia, Canada, Finland, Norway.
There is a notable concentration of Scandinavian countries and primary good exporters in this group.
Hardy and Pazarbasioglu (1998) show that primary-product exporting countries possess a distinct set
of early-warning indicators, which might explain the poor performance of the RF EWS in these cases.

23 The sample excludes Afghanistan, Angola, Benin, Burkina Faso, Burundi, Cambodia, Cape Verde, Central African Republic,
Chad, Comoros, Democratic Republic of Congo, Côte d’Ivoire, Djibouti, El Salvador, Eritrea, Ethiopia, Fiji, The Gambia,
Grenada, Guinea-Bissau, Haiti, Lao People’s Democratic Republic, Liberia, Libya, Mali, Mauritania, Mozambique, Myanmar,
Niger, Nigeria, Rwanda, Sierra Leone, Swaziland, Syria, Timor-Leste, Togo, Uganda, Yemen and Zambia.
24 Recall that recursive partitioning is robust to outliers since extreme values do not influence the internally optimal split
points. Noise resilience also appears to make CTEs outperform one of their most prominent competitors—boosting—whose
out-of-sample AUC estimates appear to be held back by the level of noise in macroeconomic data (see also Long and Servedio,
2010) (see the online Appendix for results and further discussion of boosting-based EWS).
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Figure 3. The 2007/2008 global financial crisis. 1998–2011 out-of-sample probability estimates of being in the
2-year horizon before a banking crisis for 17 countries. Ten country–year observations between 1998 and 2011
exhibit missing values and were replaced by the respective variable’s mean to obtain a probability estimate.
Vertical gray bars indicate years with a systemic banking crisis

What is also interesting is that, excluding Canada, all of these countries experienced a banking crisis
in the late 1980s or early 1990s. The ensuing institutional changes might have rendered their banking
systems more resilient 20 years later. Giannone et al. (2010) present related evidence for the impor-
tance of regulatory quality in credit markets for explaining cross-country differences in weathering
the global recession. Also note that in Australia and Norway banking systems did in fact come under
considerable stress during the relevant period—they are knife-edge cases with respect to the dummy
categorization that was applied.

The last group consists of countries that did not see their risk profiles rise and, indeed, did not
experience a systemic event: Japan is the only country in this category.
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Formalizing these observations into conditional25 out-of-sample AUC measures yields AUCs of
0.53 and 0.76 for the logit and RF model, respectively. The difference is statistically significant
(p-value = 0.00),26 while the logit AUC does not significantly differ from the uninformative 0.5 at the
5% significance level.

In summary, the results of the RF model on the most recent crisis is mixed. While the model would
not have performed as convincingly with respect to the country-specific incidence of the crisis, it would
have clearly signaled that the developed world as a whole was on a dangerous path from the early
2000s on. The first part of this conclusion nicely mirrors results reported by Claessens et al. (2010),
Rose and Spiegel (2010a,b, 2012), who find that prior to the global financial crisis hardly any predictor
conveyed reliable information about the crisis’ subsequent cross-country severity. While Rose and
Spiegel (2012) continue to argue that their results warrant skepticism towards the potential of EWS
to accurately predict a crisis, the analysis provided above suggests a different conclusion. Although
even CTE EWS would have found predicting the 2007/2008 crises somewhat more difficult than their
historical track record suggests, their use is still generally very promising. Also note that the evaluation
of the RF EWS’s performance in 2007/2008 depends on the categorization of two knife-edge cases.
Given a more lenient evaluation of these cases (Australia and Norway), Figure 3 shows that even in
terms of cross-country incidence for 2007/2008 the RF predictor did not perform badly. Especially
if combined with country-specific knowledge, as exemplified above, the proposed RF EWS would
have given policymakers a valuable warning as to the vulnerability of the world financial system prior
to the crisis.

6. CONCLUSION

This paper explored the potential of classification tree ensembles (CTEs) for forecasting binary bank-
ing crisis indicators. Their out-of-sample performance surpasses current best-practice early-warning
systems that are based on logit models, by a substantial margin. The good forecasting performance of
CTEs contrasts with the poor performance of single classification trees. However, the combination of
many classification trees into an ensemble on the one hand, and the making use of many predictors on
the other, result in an EWS that has the potential to provide policymakers with a substantially more
accurate assessment of banking crisis risk than current alternatives.

ACKNOWLEDGEMENTS

The author wishes to thank without implicating Daniel Becker, Jörg Breitung, Yao Chen, Mathias
Drehmann, Òscar Jòrda, Alois Kneipp, Keith Küster, Gernot Müller, Moritz Schularick, Heiko Wagner
and Liu Yang. The manuscript also benefited from helpful comments by four anonymous referees. All
remaining errors are the sole responsibility of the author.

REFERENCES

Abbas SM, Belhocine N, El-Ganainy A, Horton M. 2013. A historical public debt database. IMF working paper.
Albert J, Aliu E, Anderhub H, Antoranz P, Armada A, Asensio M, Baixeras C, Barrio JA, Bartko H, Bastieri D,

Becker J, Bednarek W, Berger K, Bigongiari C, Biland A, Bock RK, Bordas P, Bosch-Ramon V, Bretz T,
Britvitch I, Camara M, Carmona E, Chilingarian A, Ciprini S, Coarasa JA, Commichau S, Contreras JL, Cortina
J, Costado MT, Curtef V, Danielyan V, Dazzi F, De Angelis A, Delgado C, de los Reyes R, De Lotto B,
Domingo-Santamaría E. 2008. Implementation of the random forest method for the imaging atmospheric
cherenkov telescope MAGIC. Nuclear Instruments and Methods in Physics Research, Section A 588: 424–432.

25 ‘Conditional’, as it is used here, refers to the fact that results are conditional on this particular 1998–2011 test dataset.
26 The p-value corresponds to the test for equality of AUCs by DeLong et al. (1988).

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. (2016)
DOI: 10.1002/jae



SPOTTING THE DANGER ZONE

Alessi L, Detken C. 2011. Quasi real time early warning indicators for costly asset price boom/bust cycles: a role
for global liquidity. European Journal of Political Economy 27(3): 520–533.

Alessi L, Detken C. 2014. Identifying excessive credit growth and leverage. Working paper. European Central
Bank.

Arlot S, Celisse A. 2010. A survey of cross-validation procedures for model selection. Statistics Surveys 4: 40–79.
Breiman L. 1996a. Out-of-bag estimation. Statistics Department, University of California, Berkeley, CA.
Breiman L. 1996b. Bagging predictors. Machine Learning 24(2): 123–140.
Breiman L. 2001. Random forests. Machine Learning 45(1): 5–32.
Breiman L. 2002. Manual on setting up, using, and understanding random forests v3. 1. Statistics Department,

University of California, Berkeley, CA.
Breiman L, Friedman J, Stone CJ, Olshen RA. 1984. Classification and Regression Trees. Chapman & Hall:

London.
Bühlmann P, Yu B. 2002. Analyzing bagging. Annals of Statistics 30(4): 927–961.
Buja A, Stuetzle W. 2006. Observations on bagging. Statistica Sinica 16: 323–351.
Chen XW, Liu M. 2005. Prediction of protein-?protein interactions using random decision forest framework.

Bioinformatics 21(24): 4394–4400.
Claessens S, Dell’Ariccia G, Igan D, Laeven L. 2010. Cross-country experiences and policy implications from

the global financial crisis. Economic Policy 25(62): 267–293.
Davis EP, Karim D. 2008. Comparing early warning systems for banking crises. Journal of Financial Stability

4(2): 89–120.
DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated receiver

operating characteristic curves: a nonparametric approach. Biometrics 44(3): 837–845.
Díaz-Uriarte R, De Andrés SA. 2006. Gene selection and classification of microarray data using random forest.

BMC Bioinformatics 7: 3.
Drehmann M. 2013. Total credit as an early warning indicator for systemic banking crises. BIS Quarterly Review

June.
Drehmann M, Juselius M. 2012. Do debt service costs affect macroeconomic and financial stability? BIS

Quarterly Review September.
Drehmann M, Juselius M. 2013. Evaluating early warning indicators of banking crises: satisfying policy

requirements. BIS Working Paper No. 421.
Duttagupta R, Cashin P. 2011. Anatomy of banking crises in developing and emerging market countries. Journal

of International Money and Finance 30(2): 354–376.
Eichengreen B, Rose AK, Wyplosz C. 1994. Speculative attacks on pegged exchange rates: an empirical explo-

ration with special reference to the European monetary system. Working paper, National Bureau of Economic
Research.

Feenstra RC, Inklaar R, Timmer M. 2013. The next generation of the Penn World Table. American Economic
Review 105(10): 3150–3182.

Giannone D, Lenza M, Reichlin L. 2010. Market freedom and the global recession. IMF Economic Review 59:
111–135.

Hardy DCL, Pazarbasioglu C. 1998. Leading indicators of banking crises: was Asia different? Working paper.
International Monetary Fund.

Hastie T, Tibshirani R, Friedman J. 2013. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer: Berlin.

Hyafil L, Rivest RL. 1976. Constructing optimal binary decision trees is NP- complete. Information Processing
Letters 5(1): 15–17.

Jordà Ò. 2014. Assessing the historical role of credit: business cycles, financial crises and the legacy of Charles
S. Peirce. International Journal of Forecasting 30(3): 729–740.

Jordà Ò, Schularick M, Taylor AM. 2011. Financial crises, credit booms, and external imbalances: 140 years of
lessons. IMF Economic Review 59(2): 340–378.

Jordà Ò, Schularick M, Taylor AM. 2013. Sovereigns versus banks: credit, crises and consequences. Working
paper. NBER.

Kaminsky GL. 1998. Currency and banking crises: the early warnings of distress. Working paper. International
Monetary Fund.

Kaminsky GL, Reinhart CM. 1999. The twin crises: the causes of banking and balance-of-payments problems.
American Economic Review 89(3): 473–500.

Laeven L, Valencia F. 2008. Systemic banking crises: a new database. Working paper. International Monetary
Fund.

Laeven L, Valencia F. 2013. Systemic banking crises database. IMF Economic Review 61: 225–270.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. (2016)
DOI: 10.1002/jae



F. WARD

Liu X, Bowyer KW, Hall LO. 2004. Decision trees work better than feed- forward back-prop neural nets for a
specific class of problems. IEEE International Conference on Systems, Man and Cybernetics: The Hauge.

Long PM, Servedio RA. 2010. Random classification noise defeats all convex potential boosters. Machine
Learning 78(3): 287–304.

Nicodemus KK, Malley JD. 2009. Predictor correlation impacts machine learning algorithms: implications for
genomic studies. Bioinformatics 25(15): 1884–1890.

Nicodemus K, Wang W, Shugart Y. 2007. Stability of variable importance scores and rankings using statis-
tical learning tools on single-nucleotide polymorphisms and risk factors involved in gene? gene and gene?
environment interactions. BMC Proceedings 1(Suppl 1): S58.

Nicodemus K, Malley J, Strobl C, Ziegler A. 2010. The behaviour of random forest permutation-based variable
importance measures under predictor correlation. BMC Bioinformatics 11: 110.

Picard RR, Cook RD. 1984. Cross-validation of regression models. Journal of the American Statistical
Association 79(387): 575–583.

Prasad AM, Iverson LR, Liaw A. 2006. Newer classification and regression tree techniques: bagging and random
forests for ecological prediction. Ecosystems 9(2): 181–199.

Reinhart CM, Rogoff KS. 2010. From financial crash to debt crisis. Working paper. National Bureau of Economic
Research.

Rose AK, Spiegel MM. 2010a. Cross-country causes and consequences of the crisis: an update. European
Economic Review 55: 309–324.

Rose AK, Spiegel MM. 2010b. Cross-country causes and consequences of the 2008 crisis: international linkages
and American exposure. Pacific Economic Review 15(3): 340–363.

Rose AK, Spiegel MM. 2012. Cross-country causes and consequences of the 2008 crisis: early warning. Japan
and the World Economy 24(1): 1–16.

Schularick M, Taylor AM. 2012. Credit booms gone bust: monetary policy, leverage cycles, and financial crises,
1870–2008. American Economic Review 102(2): 1029–1061.

Segal MR. 2004. Machine learning benchmarks and random forest regression. Working paper. Center for
Bioinformatics and Molecular Biostatistics.

Stock JH, Watson MW. 2002. Forecasting using principal components from a large number of predictors. Journal
of the American Statistical Association 97(460): 1167–1179.

Stock JH, Watson MW. 2006. Forecasting with many predictors. In Handbook of Economic Forecasting, Elliott
G, Granger C W J, Timmermann A (eds). Elsevier: Amsterdam; 515–554.

Strobl C, Boulesteix AL, Zeileis A, Hothorn T. 2007. Bias in random forest variable importance measures:
illustrations, sources and a solution. BMC Bioinformatics 8: 25.

Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A. 2008. Conditional variable importance for random
forests. BMC Bioinformatics 9: 307.

Varian HR. 2014. Big data: new tricks for econometrics. Journal of Economic Perspectives 28(2): 3–28.

Copyright © 2016 John Wiley & Sons, Ltd. J. Appl. Econ. (2016)
DOI: 10.1002/jae


	SPOTTING THE DANGER ZONE: FORECASTING FINANCIAL CRISES WITH CLASSIFICATION TREE ENSEMBLES AND MANY PREDICTORS
	Summary
	Introduction
	Methodology: Classification Tree Ensembles
	Single Classification Trees
	Recursive Partitioning
	Classification Tree Ensembles

	Data
	The Long-Run Sample, 1870–2011*-3pt
	The Broad Post-1970 Samples*-3pt

	Performance Comparison
	Logit EWS
	Classification Tree-Based EWS
	Single Tree
	Bagging
	Random Forest
	Many Predictors

	ROC Comparison
	Robustness*-4pt

	Case Study: 2007/2008
	Conclusion
	REFERENCES


